
A Generative Approach to the Presentation and 
Manipulation of Hierarchical Data 

 
 

Joni Helin  
 

VTT Information Technology 
Sinitaival 6, P.O.Box 1206, FIN -33101 Tampere, Finland 

Tel. +358 3 316 3376 Fax. +358 3 317 4102 
joni.helin@vtt.fi 

 
 

Keywords. generative programming, domain specific languages, 
template metaprogramming, data presentation 

Classification. 6 month's work in 2nd year of post-graduate studies  

1 INTRODUCTION 
 

There is a vast number of systems and applications that have interactive parts that 
need to present the user with a view to some data and provide the means to manipulate it. This 
is often achieved with custom graphical user interfaces using various GUI widgets. However, 
this can easily become laborious  not only on the part of the implementor but also on the part 
of the user. 

Minor changes to the underlying data model can lead to drastic redesigns of the GUI 
and its interfaces to the rest of the application. This can become a major issue in development 
if changes are expected to be frequent. From the usability point of view, opportunities for 
exploiting structural similarities in the data are easily missed, resulting in highly specialized 
widget compositions. Presentation might not succeed in reflecting the semantics of the data, 
further confusing the user. 

We therefore need a way to produce a consistent view of the data in question to the 
user and also lift the burden of implementing the view from the application developer. 
Generative programming and domain engineering [CZA00] gives us a means to reason about 
the problem in a generalized context and arms us with the knowledge of how to automate the 
construction of software artifacts satisfying a given set of specialized requirements in the 
particular domain. 

In this paper we present a solution that allows the application developer to 
conveniently define a data model related to application-level concepts in a domain specific 
language which is then automatically translated into source code. The generated code is 
responsible for managing the state of the data model instance and providing a uniform 
graphical interface for representing and manipulating the data model instance. In addition, a 
mapping of the data model into programming language constructs is presented to allow 
compile -time typesafe access to and mutation of the data. 

The rest of the paper is organized according to the process of generative 
programming [CZA00]. In section 2, the domain of interest is defined and requirements 
analysis and domain modeling is based on examining two sample applications and their data. 
Section 3 goes on to discuss the design and implementation of a generative domain model 
[CZA00] for defining and generating data models. Finally we conclude the paper with some 
remarks on the results of the approach in an industrial setting. 

 
 
 



 2 

2 DOMAIN ANALYSIS 
 

We begin by naming and scoping the domain of interest. As described earlier, we are 
dealing with the problem of data presentation, i.e. we need to visualize a given data model 
and its state (data model instance). We narrow our scope by focusing on hierarchical data 
organizations which may contain recursion. This excludes more complex data organizations, 
for example the relational paradigm, but suffices to serve many practical needs without 
excessive increase in complexity. It also allows for an intuitive strategy of mapping the data 
model to a graphical representation using trees. 

By analyzing the needs of two planned commercial applications, namely a GUI-
builder for mobile platforms and a software installation package creation tool, we were able to 
extract and generalize requirements for defining data models that needed to be represented. 
For example, a GUI-builder needs to allow the user to manipulate properties associated with 
various GUI widgets, such as name, dimension, location and various options. The hierarchical 
structure of a menu system can be described by a data model which allows the user of the 
GUI-builder to define appropriate menus and submenus by composing them from other menu 
elements. Also when creating an installation package, there has to be a way to define which 
files are to be included, which locales are supported, what are the various properties and 
capabilities of the application being deployed etc. 

It is clear that many application -level concepts can be naturally represented by an 
invariable hierarchical structure which consists of named components. Hierarchical 
composition portrays semantic relationships between components, which can be exploited to 
create an abstraction hierarchy to ease understanding and navigation. Each component of the 
structure has an associated value that determines the state of the component. The structure and 
range of a value of a component depends on the concept it represents. We identified the 
following kinds of data structures needed to represent various values of components. 

 
• scalar values (integral numbers, real numbers, boolean values, character strings etc.), 
• symbolic enumeration constants naming certain data values, 
• collections of homogenous data values with and without duplicates, 
• grouping of heterogenous data values into fixed-size tuples, and 
• selection from alternative data structures. 

 
In addition, the applications required further abilities for constraining value ranges by 

giving predefined sets and intervals of values and by restricting the form that string 
representations of values are allowed to take. The nature of the applications also indicate a 
need to alter the state of a data model instance programmatically in addition to providing an 
interface to the user. This should preferably be accomplished in a type -safe way in the 
confines of a programming language to avoid run-time errors due to inconsistencies between 
the data model and the code accessing it. 

Based on the requirements gathered in domain analysis we are able to formulate 
appropriate abstractions for describing the particular data models in our domain. The structure 
of our data models is described using hierarchic arrangements of named attributes, which are 
either composite  or atomic. The former are used to group attributes together and the latter to 
carry actual values. Attribute values are instances of typed data, where the type of a particular 
data instance is invariable. Different data organizations and constraints on data values can be 
conveniently represented by a conventional type system with basic types that can be used to 
form more complex types using various type constructors. 

As a part of domain modeling we must identify what are the similarities and what are 
the variations in our domain. Obviously, similarities are located in the abstractions described 
earlier. They form the framework for discussing variations between different data models of 
interest to application developers. In our case, the bulk of variation is found in the variability 
of structure, instead of the variability of functionality. This follows naturally because data 
models are inherently structural entities, consisting of various compositions of data 



 3 

definitions. We can therefore conclude that conceptual modeling can be used to describe the 
overall structure of our domain. To derive a conceptual model of our particular type system, 
we can effectively utilize feature modeling [CZA00] by considering the gathered 
requirements for representing and constraining data values. Figure 1 shows a diagram of the 
feature model for our type abstraction. 

 
Figure 1. Feature diagram for the type concept. 

3 DOMAIN DESIGN AND IMPLEMENTATION 
 

We are now ready to move to the engineering part of domain engineering and design 
and implement a generative domain model  [CZA00], which allows us to automatically 
generate a family member (i.e. a data model) based on a given specification. The architecture 
of our generative domain model is based on a meta model, which defines the expressible data 
models. The meta model, associated generators and other implementation components will be 
implemented in C++. Figure 2 depicts a partial class diagram of the meta model in a slightly 
adapted UML notation. 

 
Attribute Type

ConstraintTypeStructuredType

TupleType

CompositeAttributAtomicAttribute DerivedTypeConcreteType

ScalarType GenericDerived
Type

Generic
EnumType

EnumType

Generic
ConstraintType

SequenceType

Datum

StructuredDatum ScalarDatum

ConcreteBaseType,
EnumerationType

ConcreteBaseType,
ConcreteDerivedType

TypeVisitor

VariantType

DataOwner

TypeTraits

ValueKind

 
Figure 2. Class diagram of the meta model. 

 
Meta model The abstract class Datum represents a value with a type. A Datum object 
offers services to access its type and owner, clone itself using the Virtual Constructor idiom 
[COP91] and notify interested listeners of state changes in accordance with the Observer 
pattern [GOF95]. The derived class StructuredDatum  represents values that are made up of 
more elementary values using the Composite pattern [GOF95]. Derived class ScalarDatum 
represents a value that has indivisible state, parameterized by the type of the variable 
containing the value. 



 4 

At the top of the type class hierarchy is an abstract class Type, which defines an 
interface for handling values of a particular type. The Type class supports accessing its name, 
creating values of its type, determining whether a value is an instance of the type, establishing 
equality and ordering between values and finding the successor of a value in order to iterate 
the value set . In order to keep the presentation terse, we elide descriptions of the more 
obvious type classes. It is to be noted that although the meta model permits (acyclic) sharing 
of data, such data models are not in our domain because the sharing is difficult to intuitively 
visualize by tree representations. 

Constraining arbitrary existing types is achieved using template metaprogramming 
[CZA00], in particular parametrized inheritance where a given base type is derived to produce 
a new type with further restrictions on the values of the base type. In our type system we have 
several constraint type classes.  For example, GenericEnumerationType can be used to 
select a set of values and label them with symbolic names by enumerating the values in 
question. GenericConstraintType allows for defining noncontiguous value ranges by giving 
non-empty intervals that define valid values of the resulting type. By combining various type 
constraints appropriately, syntactic restrictions can be easily enforced. 

The meta model supports introspective processing of data models by providing an 
interface in the form of the Visitor pattern [GOF95, ALE01]. However, all the types to be 
visited are not known when the meta model is implemented. To circumvent the problem, we 
have arranged the composite types to be visitable in slices that correspond to the applied type 
constructors. Instead of offering a method per each concrete type composite, we provide 
methods for visiting the various kinds of parametrized type constructor classes. Parametrized 
inheritance chains are then flattened at runtime by requests to be dispatched up the chain one 
step at a time and thereby gathering type information accumulatively.  
 
Graphical presentation of data models An important part of our approach is the 
graphical presentation of a data model instance to the user. A generic implementation is based 
on the introspection interface defined by the meta model. Multiple presentation schemes are 
possible, but an intuitive solution is to use a tree widget to display the structure and state of a 
data model instance and provide for editing the data values. Manipulations performed by the 
user are handled by the meta model instance corresponding to the data model, and changes 
that violate the type of a data value are flagged as erroneous . As an example, Figure 3 
represents an instance of the data model description given in Figure 4.  
 

 
Figure 3. A tree representation of a menu system.     Figure 4. Description of a menu system. 
 
Generator for meta model instances  In addition to the meta model, we need a generator 
that is able to produce an instance of the meta model from a data model description. This 
greatly relieves the burden that would lie in the error-prone manual composition of meta 
model class instances. As noted before, variability is found in the (possibly recursive) 
structure of data models, for which template metaprogramming is not well suited. Therefore 
we define a context-free domain-specific language (DSL) for describing data models. A 
simplified extract in extended BNF is given below: 
 
 

ATTRIBUTE 'Menu System' IS 
  'Menu Element' IS VARIANT; 
    'Menu Item' IS RECORD OF 
      'Caption' : STRING; 
    END;  
    Menu IS RECORD OF 
      Elements : SEQUENCE OF 'Menu   
                 Element'; 
    END; 
    'Menu Element' IS VARIANT OF     
              (Menu, 'Menu Item'); 
    TYPE SEQUENCE OF Menu; 
END 



 5 

DataModel ::= "DATAMODEL" Identifier "IS" TypeDecl* Attribute* “END" 
TypeDecl ::= Identifier "IS" (TypeDef | ForwardDecl) ";" 
Attribute ::= CompositeAttribute | AtomicAttribute 
CompositeAttribute ::= "COMPOSITE" Identifier "IS" TypeDecl* 
                       Attribute* "END" 
AtomicAttribute ::= "ATTRIBUTE" Identifier "IS" TypeDecl*                 
                    "TYPE" TypeDef ";" "END" 
TypeDef ::= ( TypeReference | SequenceType | SetType | TupleType 
            | VariantType | EnumerationType | PatternType | ... 
            ) [ RangeConstraint ] 
Value ::= IntegerValue | RealValue | BooleanValue | StringValue 
        | SetValue | SequenceValue | RecordValue | VariantValue ... 
 

We can implement a scheme to translate a description into C++ code that supports the 
generation of meta model instances corresponding to the attributes, types and values of the 
particular data model. An application can then call upon the generator to gain access to a data 
model instance. In our implementation, most of the semantic validation of the data model 
description is left for the C++ compiler, which is utilized to check for e.g., proper scoping, 
name clashes and restrictions on type compositions. 
 
Supporting typesafe access A drawback of the meta model approach is that even though 
the application developer knows the structure of the data model and types of values, this 
knowledge can not be utilized to conveniently and safely access values contained in the data 
model instance. This is a direct result of offering a uniform interface to process data models, 
forcing the use of downcasts to access concrete Datum and Type objects. A solution is to 
define a mapping from the constructs in our meta model to constructs of the target 
programming language. In our scheme, attributes, tuples and variants map to (nested) structs, 
containers to vectors and scalars to appropriately typed values. Recursive types are mapped to 
pointers to respective type objects to prevent infinite recursion. The scheme results in a highly 
analogous structure with the data model which facilitates ease of use. To complete the 
mapping, we have to generate code for translating the state of the meta model instance to the 
corresponding mapped data model instance and for keeping them syncronized. 

4 CONCLUSIONS 
 

In this paper we have presented a way to apply  generative programming in the 
domain of data presentation.  As a result, the meta model and domain specific language for 
defining data models significantly alleviates work needed to support applications with the 
capability to provide the user with a graphical representation of the underlying data. In 
practice, it has been observed that the data model domain described in this paper is 
appropriate for catering to the requirements of a variety of applications. The concrete 
implementation of the approach has been componentized into a convenient solution that has 
been found easy to use and apply in industrial projects. 

REFERENCES  
 
[ALE01]  Alexandrescu, A.: Modern C++ Design: Generic Programming and Design 

Patterns Applied . Addison-Wesley, 2001 
[COP91]  Coplien, J.: Advanced C++ Programming Styles and Idioms . 

Addison-Wesley, 1991 
[CZA00] Czarnecki, K.; Eisenecker, U.: Generative Programming: Methods, Tools, 

and Applications, Addison-Wesley, Reading, 2000 
[GOF95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns: 

Elements of Reusable Object-Oriented Software. Addison -Wesley, 1995 


